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This study evaluates machine learning (ML) methodologies in the pursuit of advancing 
thermodynamic flash calculations that are vital for carbon dioxide storage applications and for the 
oil and gas industry in general. We generated a dataset for training machine learning algorithms 
using a traditional physics-based model. This developed hybrid model incorporated into the machine 
learning model underlying physical constraints. While preliminary results from training and numerical 
matching were promising, the hybrid model's real-world application revealed non-trivial shortcomings. 
Specifically, mismatch in the multiphase region was observed during compositional space testing. 
Such subtle but significant flaws in machine learning methods have profound implications for the 
accurate physics of carbon storage projects. This article, therefore, presents advantages and 
disadvantages of employing ML for thermodynamic calculations, emphasizing the intricate balance 
between computational efficiency and representative physics.
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Бұл жұмыс көмірқышқыл газын сақтауға және мұнай-газ саласына қажетті көпкомпо-
нентті қоспаның құрамының термодинамикалық есептеулерін жақсарту үшін машиналық 
оқыту (MО) әдістерін бағалайды. Дәстүрлі физика моделін пайдалана отырып, біз машина-
лық оқыту алгоритмдерін үйретуге арналған деректер жинағын жасадық. Біз машиналық 
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оқытуды модельдің негізгі физика шектеулерімен біріктіретін гибридті модельді жасадық. 
Алдын ала оқыту және сандық салыстыру нәтижелері перспективалы болғанымен, гибридті 
модельді нақты әлемде қолдану елеулі кемшіліктерді анықтады. Атап айтқанда, компози-
циялық кеңістікті сынау кезінде біз көпфазалы модель пішінінің сәйкессіздігін анықтадық. 
Машиналық оқыту әдістеріндегі мұндай кемшіліктер, байқалмайтын, бірақ көміртекті 
сақтау жобаларының нақты физикасына үлкен әсер етеді. Бұл мақала термодинамикалық 
есептеулер үшін MO пайдаланудың мүмкіндіктерін мен кемшіліктерін бағалайды, есептеу 
тиімділігі мен физиканың репрезентативтілігі арасындағы күрделі теңгерімді көрсетеді.

ТҮЙІН СӨЗДЕР: көмірқышқыл газы, фазалық тепе-теңдік, машиналық оқыту, гибрид-
ті модель.
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В данной работе оцениваются методики машинного обучения (МО) в целях совершен-
ствования термодинамических расчетов состава многокомпонентной смеси, необходимых 
для хранения углекислого газа, а также для индустрии нефти и газа в целом. Используя 
традиционную физическую модель, мы создали набор данных для обучения алгоритмов 
машинного обучения,  разработали гибридную модель, объединяющую машинное обучение 
с физическими ограничениями, лежащими в основе модели. Несмотря на то, что предва-
рительные результаты обучения и численного сопоставления оказались многообещаю-
щими, применение гибридной модели в реальном мире выявило значительные недостат-
ки. В частности, при тестировании композиционного пространства мы обнаружили не-
соответствие формы многофазной модели. Подобные недостатки методов машинного 
обучения, малозаметные, но существенные, оказывают серьезное влияние на точную 
физику проектов по хранению углерода. В данной работе оцениваются возможности и 
«подводные камни» использования MО для термодинамических расчетов, подчеркивается 
сложный баланс между эффективностью вычислений и репрезентативностью физики.

КЛЮЧЕВЫЕ СЛОВА: углекислый газ, фазовое равновесие, машинное обучение, ги-
бридная модель.
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Introduction
Carbon dioxide is widely acknowledged as the primary cause of observed global 

warming. Concerns are growing due to increased CO2 emissions. The carbon capture, 
utilization, and storage (CCUS) strategy of capturing large amounts of CO2 from emission 
sources and subsequently utilizing or long-term storing in underground reservoirs has 
emerged as a proven and effective approach to mitigating the impact of CO2 emissions 
on climate change [1]. 

During the geologic carbon sequestration, injection of CO2 into oil and gas reservoirs 
exhibit significant variations in their compositions because of CO2 partitioning into liquid 
and gas phases and solubility in oil. Compositional modeling is required to capture the 
CO2-hydrocarbon phase equilibria and the flow of multiple phases in order to accurately 
model complex phase behavior. The phase split calculations, which provide the number 
and composition of the equilibrium phases assuming instantaneous mass transfer between 
phases, are essential to this modeling approach. Determining phase equilibria for each 
simulation grid element at each time step is crucial because it directly affects the accuracy 
of fluid property prediction.

Peng-Robinson (PR) [2] and the Soave-Redlich-Kwong (SRK) [3] cubic equations of 
state (EoS) are commonly used approaches for compositional simulations along with the 
Rachford-Rice flash equation [4] to compute phase equilibrium [5]. The phase behavior 
calculation is directly related to the equilibrium ratio, or K-value, which is expressed as 
the ratio of molar fractions in the vapor phase to molar fractions in the liquid phase [6]. 
The primary unknown in the phase split calculation is the K-value [7], which is determined 
through an iterative process of trial and error until solution convergence is reached. 
Empirical correlations based on investigating experimental data are used to determine 
an initial K-factor to start the iterative process [8]. The accuracy of this initial guess is 
critical because the convergence of the final solution is sensitive to the initial input [9].

Complex calculations of phase equilibrium cause high computation costs in 
compositional models. According to research, phase flash calculations account for a 
significant portion of the total simulation time. This can limit the feasibility of applying for 
long-term, field-scale CO2 injections, primarily due to rigorous iteration calculations [10]. In 
response to these challenges, various methods for accelerating phase equilibrium calculations 
have been proposed. K-value calculation techniques, reduction methods, precalculated 
tie-lines methods, and the incorporation of machine learning are among these approaches.

The initial K-value is commonly calculated using the Wilson correlation [11]. 
Improving the accuracy of this initial K-value can significanlty speed up phase calculations. 
Notably, Ghafoori et al. (2012) and Vatandoost et al. (2016) achieved more precise 
prediction of K-values related to reservoir fluid composition [12]. The latter research 
focused on heavy hydrocarbon and volatile oil systems, developing distinct correlations 
to forecast K-value. Furthermore, Michelsen (1998) and Wang (1994) demonstrated 
that using initial flash calculation estimates obtained from the previous time step can 
considerably speed up the phase equilibrium calculation when coupled with the full 
Newton’s method [13, 10].

The conventional reduction method entails lumping the reservoir fluid composition into 
a reduced set of pseudo-components [14], while maintaining the accuracy of the equation 
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of state model. Michelsen (1986) introduced a method to reduce the computational cost 
with the primary concept being to neglect binary interaction parameters (BIP) originally 
determined by fitting the equation of state to experimental data [15]. Hendriks et al. 
(1992) and Firoozabadi and Pan (2002) extended the reduction method and demonstrated 
dimensionality reduction in various phase equilibrium problems without neglecting BIP [16]. 

Voskov and Tchelepi (2009) [17] demonstrated an acceleration in phase split 
calculations by utilizing precalculated tie-lines generated using the negative flash method 
proposed by Whitson and Michelsen (1989) [18]. The Compositional Space Adaptive 
Tabulation (CSAT) technique further optimized the displacement path along tie-lines during 
gas injection processes, reducing simulation time by eliminating the need for redundant 
stability checks. Belkadi et al. (2011) expanded on this by introducing Tie-line Distance 
Based Approximation, a method designed to accelerate tie-line search [19]. 

Machine learning techniques have recently emerged as useful tools for addressing 
computational time challenges in phase equilibrium calculations. Notably, artificial neural 
networks (ANNs) have been used successfully to calculate oil properties, such as bubble 
point pressure, gas-oil ratio, and formation volume factor. This advancement eliminates 
the necessity for iterative computations [20]. Furthermore, the support vector machine 
(SVM) technique based on kernel neuron functions has demonstrated its effectiveness in 
predicting complex nonlinear problems relating to crude oil PVT properties [21].

While machine learning techniques have shown promise in significantly reducing 
computational time, questions about the accuracy and feasibility of a data-driven approach 
remain. Magzymov et al. (2021) highlighted the inaccuracies in a purely data-driven 
machine learning technique [22]. They proposed incorporating physics principles into the 
machine learning algorithm to capture flow in porous media. Recent scientific interest has 
been drawn to physics-informed machine learning, which has applications to a variety of 
physics problems, such as Navier–Stokes, Poisson, Burgers equations, and other partial 
differential equations. This hybrid approach allows the industry to avoid relying solely 
on data-driven machine learning algorithms.

Gaganis and Varotsis (2012) presented the physics-machine learning coupling by 
introducing discriminating functions for non-iterative phase stability calculations [23]. 
These discriminating functions utilized the tangent plane distance criteria [7] and identified 
stable conditions. Furthermore, Gaganis and Varotsis (2014) applied the regression model 
to derive the reduced variables for two-phase split calculations [24]. They also used Support 
Vector Machine (SVM) to distinguish between stable and unstable conditions. Kashinath 
et al. (2018) employed Relevance Vector Machines (RVM) for classifying the supercritical 
one-phase region, while using another classifier to determine the phases in the sub-critical 
region. Finally, ANNs were used to predict the K-values for phase splitting [25].

In this study, we utilized a negative flash calculation method based on the Peng-
Robinson EoS and Rachford-Rice flash equations to generate a set of synthetic data that 
included compositions of liquid and vapor phases within CO2-hydrocarbon mixtures. We 
could effectively avoid potential issues with experimental data quality by generating data 
using the physics-based negative flash method. Subsequently, we applied the synthetic 
data to train the hybrid physics-based machine learning model and compared it to a pure 
data-driven machine learning model. 
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Methodology 
Phase equilibrium calculations and construction of machine learning algorithm 
This section describes a procedure for negative flash calculations with further 

construction and training of the corresponding machine learning models. We generate 
a training dataset by using the negative flash calculation approach based on the Peng-
Robinson equation of state (1978) to determine phase equilibrium of CO2-hydrocarbon 
system. The machine learning models are then trained on the synthetic dataset to predict 
the equilibrium ratio. Finally, we validate machine learning results with the physics-based 
calculations. Integrating machine learning technique for predicting K-values shortens the 
computational time while maintaining phase equilibrium physics.

2.1. Negative flash calculation
We solve two-phase isothermal negative flash problems over the range of composition 

containing CO2 and hydrocarbon mixture, pressure and temperature. Advantage of the 
negative flash procedure is the simultaneous calculation of phase split (number of phases) 
and phase equilibrium (liquid and gas phase composition). 

Negative flash is based on the common approach requiring the chemical potential of 
each component i=1,2,…,n in each coexisting phases to be equal. Chemical potential is 
expressed in terms of fugacity:

or in terms of fugacity coefficients:

where L and V corresponds to the liquid and vapor phase, xi and yi – component i mole 
fractions  ϕi

L and ϕi
V are the fugacity coefficients of component i in liquid and vapor 

phases, P is pressure. Fugacity coefficient can be expressed in terms of the measurables 
values of pressure, temperature and volume:

Peng-Robinson Equation of state (Peng and Robinson, 1978) is applied to determine 
fugacity coefficient, where the general form of the equation (4) is transformed to eq. (5) 
expressed in terms of compressibility factor Z, and then substituted to eq. (3) and finalized 
in eq. (6).

f L
i f V

i= (1)

(2)

(3)

(4)

(5)

(6)

Lф Рx ii = ф Рy ii
V
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(7)

(8)

(9)

(10)

Material balance for each component i must be satisfied:
zi = xinL + yinV,         i =1,2,…N 

Where nL and nV are the fraction of moles in liquid and vapor phases. Introducing 
equilibrium coefficient, or K-value: K=yi/xi, phase mole fractions can be expressed:

The straightforward approach of solving xi, yi, and nV is based on the trial-and-error 
successive substitution method. The constraint of the xi and yi mole fraction summation 
to unity can be solved by Rachford-Rice relation [4]:

We use Wilson’s correlation to specify initial K-value (Wilson, 1969). The first guess 
of nV is reasonably set to 0.5. Further solution of K-value and nV is iterative successive 
substitution starting with updating nV at the fixed K-value followed by further updating 
K-value. Function f(nV) decreases monotonically with asymptotes 1/(1-Ki). Non-negative 
phase composition occurs at the nV between asymptotes Final 
convergence is agreed to be achieved when K-value error is in the range of the accepted 
tolerance.

2.2 Physics-informed ML construction framework
We designed a hybrid framework that incorporates machine learning techniques to 

perform negative flash calculations to replace computationally expensive physical models 
while preserving physics-based workflow. The Figure 1 depicts the schematic workflow 
of a physically representative model of flash calculations compared to a hybrid model.

Figure 1 - Comparison of physically representative model with the hybrid model
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Both models use the fluid composition (0 to 1), pressure (40 to 70 atm) and temperature 

(330 to 370 K) as inputs to produce outputs that include negative flash phase compositions. 
Carbon dioxide (CO2), butane (C4), and decane (C10) were used. To generate synthetic data, 
physics-based flash calculations were conducted on a random sample of input parameters 
within a reasonable range that represented hydrocarbon reservoirs and CO2 injection 
scenarios. This paper focuses on two phase regions. A total of 7000 data points were 
generated within the domain of interest. These data points were divided into three sets: 
80% for machine learning model training, 10% for validation, and 10% for testing.

For implementation of machine learning algorithms in a hybrid model we applied physical 
constraints (see Figure 2). Raw machine learning implementation may result in unphysical 
modelling and predictions. For example, unconstrained machine learning can produce results 
that violate mass balance, where sum of all component fractions does not equal unity for each 
phase. Moreover, the boundary of two-phase compositional space may have an irregular shape.

We build the hybrid model that incorporates the computational efficiency of machine 
learning with the underlying physics. The hybrid model consists of a series model in which 
machine learning was used to find Ki equilibrium constants for each component instead 
of focusing on individual components. Following that, we use Ki equilibrium constants in 
one-time Rachford-Rice calculations. The final step ensures that we respect mass balance 
and phase amounts by using negative flash calculation. It is worth noting that the choice of 
target variables is important. We selected to predict ln(xi) and ln(yi) of each component. 
Then, Ki values were calculated externally based on neural networks output as Ki=yi/xi. 

Results and Discussions
We tested several machine learning algorithms to evaluate the accuracy of matching 

the set of synthetic data (see Figure 3). We evaluated linear regression, decision tree, 
support vector machine, Gaussian process regression, and neural network (deep learning). 
For fair comparison we tested how well the models can match a single parameter ln(yc10) 
vapor composition of decane. Based on the evaluation we selected neural network model 
for further implementation in the hybrid model, because neural networks have demonstrated 
accuracy, flexibility to incorporate multiple input/output features, and flexibility to alter 
internal architecture of the model.   

Figure 2 – Comparison of traditional physical model, pure machine learning, hybrid model
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Figure 3 – Comparison of machine learning algorithms ability to match vapor phase composition  
of decane in CO2-hydrocarbon systems 

Figure 4 – Hybrid model of hydrocarbon mixture with СО2: training, validation, and testing

Figure 4 shows tuning of neural network as well as model fitting, validation, and 
testing performance. As demonstrated by the match, the neural network is capable of 
capturing essential features of component compositions. Then, based on the overall 
composition, we perform one-time Rachford-Rice calculations to obtain final equilibrated 
phases as well as phase saturation. The results are shown in Figure 5 for 40 atm and 335 K. 
Figure 5a depicts physical equation-of-state results, with blue lines representing tie-lines 
in the two-phase region. Figure 5b shows outputs of the hybrid model proposed in this 
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paper. When compared, both results are very close. Figures 5c and 5d show Ki matching. 
It is worth noting that even though the hybrid model matches target values in Figures 4, 5c 
and 5d, we can observe that two phase regions differ noticeably in compositional space. 
Figure 6 depicts similar results for different conditions (55 atm and 350 K). Again, we 
see that the overall size of the two-phase zone generated by the hybrid model is similar 
to the physical model, but the size is noticeably different. A difference in the two-phase 
region size has significant implications for reservoir simulation efforts and carbon capture 
project design. For example, the red circle in the compositional space in Figure 5a and 5b 
is single-phase versus two-phase predicted by the hybrid model. The presence or absence 
of two phases has important implications for flow modeling in porous media, including 
relative permeability effects, trapping, capillary forces. Thus, numerical match of hybrid 
model does not imply that machine learning or hybrid models can completely replace 
physical models. Depending on the application, hybrid models can provide significant 
computational benefits; however, a comprehensive evaluation of hybrid and physics-
informed models is required before wide-scale implementation.

Figure 5 – Results for flash calculations at 40 atm, 335K
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Figure 6 – Results for flash calculations at 55 atm, 350 K

Conclusions
In this paper, we presented the hybrid approach to thermodynamic flash calculations 

that combines traditional physical models and machine learning algorithms. We developed 
the framework for training neural networks with data generated by physical models. The 
hybrid model was tested for the ability to capture physical phenomena. According to the 
results, the hybrid model is capable of capturing the essential physics of phase behavior. 
The initial results of training and numerical analysis appeared promising, but the hybrid 
model had some limitations. During compositional space tests, there was a noticeable 
difference in the shape of the multiphase region. These minor but significant differences 
in machine learning approaches can have a great impact on the precision required in 
carbon storage project design. This study examined the benefits and challenges of using 
machine learning for thermodynamic computations, highlighting the delicate balance 
between potential computational efficiency gain and accurate physical representation.  
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