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This study evaluates machine learning (ML) methodologies in the pursuit of advancing
thermodynamic flash calculations that are vital for carbon dioxide storage applications and for the
oil and gas industry in general. We generated a dataset for training machine learning algorithms
using a traditional physics-based model. This developed hybrid model incorporated into the machine
learning model underlying physical constraints. While preliminary results from training and numerical
matching were promising, the hybrid model's real-world application revealed non-trivial shortcomings.
Specifically, mismatch in the multiphase region was observed during compositional space testing.
Such subtle but significant flaws in machine learning methods have profound implications for the
accurate physics of carbon storage projects. This article, therefore, presents advantages and
disadvantages of employing ML for thermodynamic calculations, emphasizing the intricate balance
between computational efficiency and representative physics.
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By XyMbIC KOMIPKbIWKbIT 2a3bIH CakmayFa XeHe MyHal-2a3 canacbiHa Kaxemmi Kernkomo-
HeHmmMI KocnaHblH KypaMbiHbIH MepMoOUHaMUKaribiK eCernmeynepiH xakcapmy YWwiH MawuHarbiK
okbimy (MO) adicmepiH baranaiiobl. Joacmypni pusuka moderniH natidanaHa ombipsbir, 6i3 MawuHa-
TbIK OKbimy anzopummOepiH ylipemyae apHasraH 0epekmep XUHafbiH kacaobiK. bi3z MawuHabIK
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0KbImyObl MOOenbOiH Hezidai husuka wekmeynepimeH 6ipikmipemiH aubpudmi modens0i xacadbiK.
AndbIH ana oKkbimy XeHe caHObIK canbiCmbIpy Hemuxenepi nepcriekmusars! 6osFaHbIMEH, 2ubpudmi
mo0lenb0i Hakmbl ariemdOe KondaHy eneyni kemwinikmepdi aHbikmadbl. Aman atimkaHda, KOMMo3u-
UusinblK KeHicmikmi ceiHay ke3iHOe 6i3 kerighaldarbl MOderb nilwiHiHiH catikeccizlieiH aHbIKmaobIK.
MauwuHarnbik okbimy adicmepiHdeei myHOal kemwinikmep, 6alikanmalmsiH, bipak kKemipmexkmi
cakmay xobanapbiHbliH HaKMbl ¢huduKkachkiHa yrikeH acep emedi. byn makana mepmoOuHaMuKarbIK
ecenmeynep ywiH MO natdanaHydbiH MyMKiHOIKMepIiH MeH keMwinikmepiH 6aranaliobl, ecenmey
muimdiniei MeH ¢budukaHbIH pernpe3eHmamusmirniei apacbiHOarbl Kypoesi meHaepimoi kepcemeoi.

TYUIH CO3LEP: keMipKbIWKbIT 2a3b1, (hasarbik mene-meHOiK, MalUuHabIK OKbImy, 2u6pud-
mi moderb.
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B daHHoli pabome oueHusaromcsi MemoduKu MawuHHo20 obyyeHusi (MO) e uensix cosepuwer-
CmMeosaHUsi mepMOOUHaMUHECKUX pacyemos cocmasa MHO20KOMIOHEHMHOU cMecu, He0bX00UMbIX
Ol XpaHeHUs yarieKucio20 2asa, a makxe 05151 UHOycmpuu Heghmu u e2a3a 8 yesioM. Vcronb3ysi
mpaduyuoHHYH hu3u4ecKyo Mooerb, Mbi co30anu Habop OaHHbIX Ot 0byYeHuUs1 an2opummos
MalwUuHHO20 0byyeHusi, pa3pabomarnu aubpudHyto Modesib, 06beAUHSIIWY MaWUHHOE 0byyeHue
C Qhu3UYECKUMU O2paHUYeHUsIMU, fiexaujumu 8 ocHoge modernu. Hecmompsi Ha mo, ymo npedsa-
pumernbHble pe3yribmambi 06y4eHUs U YUCIIEHHO20 COorNocmas/eHusi okasanucb MHo2oobeuwaro-
wumu, npumeHeHue aubpudHol Modernu 8 peanbHOM MUPE 8bISI8UIIO 3Ha4uUmMerbHble Hedocmam-
Ku. B yacmHocmu, npu mecmupogaHuu KOMMO3UUUOHHOZ0 rpocmpaHcmea Mbl 0bHapyXusnu He-
coomeemcmeue ghopMbl MHO20¢hasHoU modenu. [No0obHbIe Hedocmamku Memodoe MawuHHO20
06yyeHusi, Mano3amMemHble, HO CYyWECMBEHHbIE, OKa3bi8atom CEPbLE3HOE BIIUSTHUE HA MOYHYH
¢huU3UKY PoeKkmos rio xpaHeHuro yernepoda. B daHHoU pabome oueHU8aromcsi 03MOXHOCMU U
«rno0800HbIe KaMHU» ucronb3o8aHusi MO Ons mepmoduHamMu4ecKux pacyemos, nod4yepkKusaemcsi
CrOXHbIU 6anaHc mexdy 3¢hgbeKmu8HOCMbIO 8bIYUCEHUU U pernpe3eHmamueHOCMbIo (hU3UKU.

KITOYEBBIE CJIOBA: yanekucnbll ea3, ha3zogoe pasHogecue, MawuHHoe obydyeHue, au-
b6pudHasi Mmoderib.
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Introduction

Carbon dioxide is widely acknowledged as the primary cause of observed global
warming. Concerns are growing due to increased CO, emissions. The carbon capture,
utilization, and storage (CCUS) strategy of capturing large amounts of CO, from emission
sources and subsequently utilizing or long-term storing in underground reservoirs has
emerged as a proven and effective approach to mitigating the impact of CO, emissions
on climate change [1].

During the geologic carbon sequestration, injection of CO, into oil and gas reservoirs
exhibit significant variations in their compositions because of CO, partitioning into liquid
and gas phases and solubility in oil. Compositional modeling is required to capture the
CO,-hydrocarbon phase equilibria and the flow of multiple phases in order to accurately
model complex phase behavior. The phase split calculations, which provide the number
and composition of the equilibrium phases assuming instantaneous mass transfer between
phases, are essential to this modeling approach. Determining phase equilibria for each
simulation grid element at each time step is crucial because it directly affects the accuracy
of fluid property prediction.

Peng-Robinson (PR) [2] and the Soave-Redlich-Kwong (SRK) [3] cubic equations of
state (EoS) are commonly used approaches for compositional simulations along with the
Rachford-Rice flash equation [4] to compute phase equilibrium [5]. The phase behavior
calculation is directly related to the equilibrium ratio, or K-value, which is expressed as
the ratio of molar fractions in the vapor phase to molar fractions in the liquid phase [6].
The primary unknown in the phase split calculation is the K-value [7], which is determined
through an iterative process of trial and error until solution convergence is reached.
Empirical correlations based on investigating experimental data are used to determine
an initial K-factor to start the iterative process [8]. The accuracy of this initial guess is
critical because the convergence of the final solution is sensitive to the initial input [9].

Complex calculations of phase equilibrium cause high computation costs in
compositional models. According to research, phase flash calculations account for a
significant portion of the total simulation time. This can limit the feasibility of applying for
long-term, field-scale CO, injections, primarily due to rigorous iteration calculations [10]. In
response to these challenges, various methods for accelerating phase equilibrium calculations
have been proposed. K-value calculation techniques, reduction methods, precalculated
tie-lines methods, and the incorporation of machine learning are among these approaches.

The initial K-value is commonly calculated using the Wilson correlation [11].
Improving the accuracy of this initial K-value can significanlty speed up phase calculations.
Notably, Ghafoori et al. (2012) and Vatandoost et al. (2016) achieved more precise
prediction of K-values related to reservoir fluid composition [12]. The latter research
focused on heavy hydrocarbon and volatile oil systems, developing distinct correlations
to forecast K-value. Furthermore, Michelsen (1998) and Wang (1994) demonstrated
that using initial flash calculation estimates obtained from the previous time step can
considerably speed up the phase equilibrium calculation when coupled with the full
Newton’s method [13, 10].

The conventional reduction method entails lumping the reservoir fluid composition into
a reduced set of pseudo-components [14], while maintaining the accuracy of the equation
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of state model. Michelsen (1986) introduced a method to reduce the computational cost
with the primary concept being to neglect binary interaction parameters (BIP) originally
determined by fitting the equation of state to experimental data [15]. Hendriks et al.
(1992) and Firoozabadi and Pan (2002) extended the reduction method and demonstrated
dimensionality reduction in various phase equilibrium problems without neglecting BIP [16].

Voskov and Tchelepi (2009) [17] demonstrated an acceleration in phase split
calculations by utilizing precalculated tie-lines generated using the negative flash method
proposed by Whitson and Michelsen (1989) [18]. The Compositional Space Adaptive
Tabulation (CSAT) technique further optimized the displacement path along tie-lines during
gas injection processes, reducing simulation time by eliminating the need for redundant
stability checks. Belkadi et al. (2011) expanded on this by introducing Tie-line Distance
Based Approximation, a method designed to accelerate tie-line search [19].

Machine learning techniques have recently emerged as useful tools for addressing
computational time challenges in phase equilibrium calculations. Notably, artificial neural
networks (ANNs) have been used successfully to calculate oil properties, such as bubble
point pressure, gas-oil ratio, and formation volume factor. This advancement eliminates
the necessity for iterative computations [20]. Furthermore, the support vector machine
(SVM) technique based on kernel neuron functions has demonstrated its effectiveness in
predicting complex nonlinear problems relating to crude oil PVT properties [21].

While machine learning techniques have shown promise in significantly reducing
computational time, questions about the accuracy and feasibility of a data-driven approach
remain. Magzymov et al. (2021) highlighted the inaccuracies in a purely data-driven
machine learning technique [22]. They proposed incorporating physics principles into the
machine learning algorithm to capture flow in porous media. Recent scientific interest has
been drawn to physics-informed machine learning, which has applications to a variety of
physics problems, such as Navier—Stokes, Poisson, Burgers equations, and other partial
differential equations. This hybrid approach allows the industry to avoid relying solely
on data-driven machine learning algorithms.

Gaganis and Varotsis (2012) presented the physics-machine learning coupling by
introducing discriminating functions for non-iterative phase stability calculations [23].
These discriminating functions utilized the tangent plane distance criteria [7] and identified
stable conditions. Furthermore, Gaganis and Varotsis (2014) applied the regression model
to derive the reduced variables for two-phase split calculations [24]. They also used Support
Vector Machine (SVM) to distinguish between stable and unstable conditions. Kashinath
et al. (2018) employed Relevance Vector Machines (RVM) for classifying the supercritical
one-phase region, while using another classifier to determine the phases in the sub-critical
region. Finally, ANNs were used to predict the K-values for phase splitting [25].

In this study, we utilized a negative flash calculation method based on the Peng-
Robinson EoS and Rachford-Rice flash equations to generate a set of synthetic data that
included compositions of liquid and vapor phases within CO,-hydrocarbon mixtures. We
could effectively avoid potential issues with experimental data quality by generating data
using the physics-based negative flash method. Subsequently, we applied the synthetic
data to train the hybrid physics-based machine learning model and compared it to a pure
data-driven machine learning model.
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Methodology

Phase equilibrium calculations and construction of machine learning algorithm

This section describes a procedure for negative flash calculations with further
construction and training of the corresponding machine learning models. We generate
a training dataset by using the negative flash calculation approach based on the Peng-
Robinson equation of state (1978) to determine phase equilibrium of CO,-hydrocarbon
system. The machine learning models are then trained on the synthetic dataset to predict
the equilibrium ratio. Finally, we validate machine learning results with the physics-based
calculations. Integrating machine learning technique for predicting K-values shortens the
computational time while maintaining phase equilibrium physics.

2.1. Negative flash calculation

We solve two-phase isothermal negative flash problems over the range of composition
containing CO, and hydrocarbon mixture, pressure and temperature. Advantage of the
negative flash procedure is the simultaneous calculation of phase split (number of phases)
and phase equilibrium (liquid and gas phase composition).

Negative flash is based on the common approach requiring the chemical potential of
each component i=1,2,...,n in each coexisting phases to be equal. Chemical potential is

expressed in terms of fugacity:
L_rV
fi=fi M

or in terms of fugacity coefficients:
L V
Xipi P=Yigpi P @
where L and V corresponds to the liquid and vapor phase, x; and y; — component i mole
fractions ¢/ and ¢,” are the fugacity coefficients of component i in liquid and vapor

phases, P is pressure. Fugacity coefficient can be expressed in terms of the measurables
values of pressure, temperature and volume:

1 (® (E)P) RT
lnd)i = ﬁ_’; ani %4

T,V,leii

dV —InZ, i=12,..N 3)

Peng-Robinson Equation of state (Peng and Robinson, 1978) is applied to determine
fugacity coefficient, where the general form of the equation (4) is transformed to eq. (5)
expressed in terms of compressibility factor Z, and then substituted to eq. (3) and finalized
in eq. (6).

RT a.a

P T T v D+ b - b @

73— (1-B)Z?+(A—2B—-3B*)Z—(AB—B*—B3) =0 5)
— A z+(1-v2)B
Ing=(Z-1)—-In(Z-B) + G lnz+(1+ﬁ)3 (6)
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Material balance for each component i must be satisfied:
z;=xnt+ yn’, i=12..N @)
Where n* and n” are the fraction of moles in liquid and vapor phases. Introducing
equilibrium coefficient, or K-value: K=y,/x,;, phase mole fractions can be expressed:

_ Zi
T T - D (8)
; = Rz ©)
YT T (K — Dn?

The straightforward approach of solving x;, v, and n"” is based on the trial-and-error
successive substitution method. The constraint of the x; and y; mole fraction summation
to unity can be solved by Rachford-Rice relation [4]:

N N
F = Y on=x) = 11f((,'2—_3ﬂ=0 (10)

We use Wilson’s correlation to specify initial K-value (Wilson, 1969). The first guess
of n” is reasonably set to 0.5. Further solution of K-value and »” is iterative successive
substitution starting with updating »" at the fixed K-value followed by further updating
K-value. Function f(n") decreases monotonically with asymptotg:s 1/(1-K;). Non-negative
phase composition occurs at the n” between asymptotes [ — < n¥ < . Final
convergence is agreed to be achieved when K-value error is in the range of the accepted
tolerance.

2.2 Physics-informed ML construction framework

We designed a hybrid framework that incorporates machine learning techniques to
perform negative flash calculations to replace computationally expensive physical models
while preserving physics-based workflow. The Figure I depicts the schematic workflow
of a physically representative model of flash calculations compared to a hybrid model.

Initial guess for K;

1

v
Rachford-Rice for n*,n"” Machine learning to
2 No determine K
v 1
o Z Kiz; K Accept x;, l
=TT K =D’ Y= — »nY
(K; — Dn 1+ (K; — )n! converged Yi p Rachford-Rice for nt,nV
Yes 2
Lz | Lz | 7
Accept X;
L .G My
[ 1],
¥
Update K;
4
L
Hybrid model

Physically representative model

Figure 1 - Comparison of physically representative model with the hybrid model
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Both models use the fluid composition (0 to 1), pressure (40 to 70 atm) and temperature
(330 to 370 K) as inputs to produce outputs that include negative flash phase compositions.
Carbon dioxide (CO,), butane (C,), and decane (C,,) were used. To generate synthetic data,
physics-based flash calculations were conducted on a random sample of input parameters
within a reasonable range that represented hydrocarbon reservoirs and CO, injection
scenarios. This paper focuses on two phase regions. A total of 7000 data points were
generated within the domain of interest. These data points were divided into three sets:
80% for machine learning model training, 10% for validation, and 10% for testing.

For implementation of machine learning algorithms in a hybrid model we applied physical
constraints (see Figure 2). Raw machine learning implementation may result in unphysical
modelling and predictions. For example, unconstrained machine learning can produce results
that violate mass balance, where sum of all component fractions does not equal unity for each
phase. Moreover, the boundary of two-phase compositional space may have an irregular shape.

We build the hybrid model that incorporates the computational efficiency of machine
learning with the underlying physics. The hybrid model consists of a series model in which
machine learning was used to find Ki equilibrium constants for each component instead
of focusing on individual components. Following that, we use Ki equilibrium constants in
one-time Rachford-Rice calculations. The final step ensures that we respect mass balance
and phase amounts by using negative flash calculation. It is worth noting that the choice of
target variables is important. We selected to predict In(xi) and In(yi) of each component.
Then, Ki values were calculated externally based on neural networks output as Ki=yi/xi.

hysically representative model of hydrocarbon mixture with CO,

Peng-Robinson . lterative, )
o g X1, y1 computationally expensive,
iterative calc. Accurate,

Represents physics

Machine learning model of hydrocarbon mixture with CO,

Machine
learning model

Hybrid model of hydrocarbon mixture with CO,

Less iterative,
2 . A computationally favorable,
P,z Hybrid model Xi, yi More accurate,
Has more physical constraintg

Figure 2 — Comparison of traditional physical model, pure machine learning, hybrid model

Non-iterative,

Xi, yi computationally inexpensive,
Inaccurate,
Has no physical constraints

Results and Discussions

We tested several machine learning algorithms to evaluate the accuracy of matching
the set of synthetic data (see Figure 3). We evaluated linear regression, decision tree,
support vector machine, Gaussian process regression, and neural network (deep learning).
For fair comparison we tested how well the models can match a single parameter In(y.10)
vapor composition of decane. Based on the evaluation we selected neural network model
for further implementation in the hybrid model, because neural networks have demonstrated
accuracy, flexibility to incorporate multiple input/output features, and flexibility to alter
internal architecture of the model.
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Figure 3 — Comparison of machine learning algorithms ability to match vapor phase composition
of decane in CO2-hydrocarbon systems
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Figure 4 — Hybrid model of hydrocarbon mixture with CO2: training, validation, and testing

Figure 4 shows tuning of neural network as well as model fitting, validation, and
testing performance. As demonstrated by the match, the neural network is capable of
capturing essential features of component compositions. Then, based on the overall
composition, we perform one-time Rachford-Rice calculations to obtain final equilibrated
phases as well as phase saturation. The results are shown in Figure 5 for 40 atm and 335 K.
Figure 5a depicts physical equation-of-state results, with blue lines representing tie-lines
in the two-phase region. Figure 5b shows outputs of the hybrid model proposed in this
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paper. When compared, both results are very close. Figures 5¢ and 5d show Ki matching.
It is worth noting that even though the hybrid model matches target values in Figures 4, 5c
and 5d, we can observe that two phase regions differ noticeably in compositional space.
Figure 6 depicts similar results for different conditions (55 atm and 350 K). Again, we
see that the overall size of the two-phase zone generated by the hybrid model is similar
to the physical model, but the size is noticeably different. A difference in the two-phase
region size has significant implications for reservoir simulation efforts and carbon capture
project design. For example, the red circle in the compositional space in Figure 5a and 5b
is single-phase versus two-phase predicted by the hybrid model. The presence or absence
of two phases has important implications for flow modeling in porous media, including
relative permeability effects, trapping, capillary forces. Thus, numerical match of hybrid
model does not imply that machine learning or hybrid models can completely replace
physical models. Depending on the application, hybrid models can provide significant
computational benefits; however, a comprehensive evaluation of hybrid and physics-
informed models is required before wide-scale implementation.

n-C10 n-C10

(© ﬂ (d)

h
3

K, for each component
3

10° 103 .
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

concentration scan concentration scan

Figure 5 — Results for flash calculations at 40 atm, 335K
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K. f
K‘ for ea

. 3
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
nnnnnn tration scan concentration scan

Figure 6 — Results for flash calculations at 55 atm, 350 K

Conclusions

In this paper, we presented the hybrid approach to thermodynamic flash calculations
that combines traditional physical models and machine learning algorithms. We developed
the framework for training neural networks with data generated by physical models. The
hybrid model was tested for the ability to capture physical phenomena. According to the
results, the hybrid model is capable of capturing the essential physics of phase behavior.
The initial results of training and numerical analysis appeared promising, but the hybrid
model had some limitations. During compositional space tests, there was a noticeable
difference in the shape of the multiphase region. These minor but significant differences
in machine learning approaches can have a great impact on the precision required in
carbon storage project design. This study examined the benefits and challenges of using
machine learning for thermodynamic computations, highlighting the delicate balance
between potential computational efficiency gain and accurate physical representation. €
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